from sklearn import datasets
import pandas as pd
# load iris dataset
iris = datasets.load_iris()
# Since this is a bunch, create a dataframe
df=pd.DataFrame(iris.data)
print(df.columns)
df['class']=iris.target
df.columns=['sepal.length', 'sepal.width', 'petal_len', 'petal_wid', 'class']
df.dropna(how="all", inplace=true) # remove any empty lines
print(df.head())
import numpy as np
import matplotlib. pyplot as plt
from scipy. stats import norm
x_axis=np.arange(-20,20,0.01)
mean=df["sepal.length"].mean()
sd=df.loc[:,"sepal.width"].std()
plt. plot(x_axis,norm.pdf(x_axis,mean,sd))
plt. show()