pastebin

Paste Search Dynamic
Recent pastes
payoff player
  1. import numpy as np
  2. from scipy.optimize import linprog
  3.  
  4. # Payoff matrix for Player 1
  5. payoff_player1 = np.array([[0, 25, 10],
  6.                           [-25, 0, 5],
  7.                           [-10, -5, 0]])
  8.  
  9. # Payoff matrix for Player 2
  10. payoff_player2 = -payoff_player1.T
  11.  
  12. # Solve linear programming model for Player 1
  13. c_player1 = [-25, -10]
  14. A_ub_player1 = [[-1, 0], [0, -1], [0, 0]]
  15. b_ub_player1 = [-1, -1, 1]
  16. bounds_player1 = [(0, 1), (0, 1)]
  17. result_player1 = linprog(c_player1, A_ub=A_ub_player1, b_ub=b_ub_player1, bounds=bounds_player1)
  18.  
  19. # Optimal strategy and payoff for Player 1
  20. optimal_strategy_player1 = result_player1.x
  21. payoff_player1 = -result_player1.fun
  22.  
  23. # Solve linear programming model for Player 2
  24. c_player2 = [25, 10]
  25. A_ub_player2 = [[1, 0], [0, 1], [0, 0]]
  26. b_ub_player2 = [1, 1, -1]
  27. bounds_player2 = [(0, 1), (0, 1)]
  28. result_player2 = linprog(c_player2, A_ub=A_ub_player2, b_ub=b_ub_player2, bounds=bounds_player2)
  29.  
  30. # Optimal strategy and payoff for Player 2
  31. optimal_strategy_player2 = result_player2.x
  32. payoff_player2 = result_player2.fun
  33.  
  34. # Print the results
  35. print("Optimal strategy for Player 1:", optimal_strategy_player1)
  36. print("Payoff for Player 1:", payoff_player1)
  37. print()
  38. print("Optimal strategy for Player 2:", optimal_strategy_player2)
  39. print("Payoff for Player 2:", payoff_player2)
  40. # your code goes here
Parsed in 0.022 seconds